By Topic

Importance-driven feature enhancement in volume visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
I. Viola ; Inst. of Comput. Graphics & Algorithms, Vienna Univ. of Technol., Austria ; A. Kanitsar ; M. E. Groller

This paper presents importance-driven feature enhancement as a technique for the automatic generation of cut-away and ghosted views out of volumetric data. The presented focus+context approach removes or suppresses less important parts of a scene to reveal more important underlying information. However, less important parts are fully visible in those regions, where important visual information is not lost, i.e., more relevant features are not occluded. Features within the volumetric data are first classified according to a new dimension, denoted as object importance. This property determines which structures should be readily discernible and which structures are less important. Next, for each feature, various representations (levels of sparseness) from a dense to a sparse depiction are defined. Levels of sparseness define a spectrum of optical properties or rendering styles. The resulting image is generated by ray-casting and combining the intersected features proportional to their importance (importance compositing). The paper includes an extended discussion on several possible schemes for levels of sparseness specification. Furthermore, different approaches to importance compositing are treated.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:11 ,  Issue: 4 )