By Topic

Quick-VDR: out-of-core view-dependent rendering of gigantic models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. -E. Yoon ; Dept. of Comput. Sci., North Carolina Univ., Chapel Hill, NC, USA ; B. Salomon ; R. Gayle ; D. Manocha

We present a novel approach for interactive view-dependent rendering of massive models. Our algorithm combines view-dependent simplification, occlusion culling, and out-of-core rendering. We represent the model as a clustered hierarchy of progressive meshes (CHPM). We use the cluster hierarchy for coarse-grained selective refinement and progressive meshes for fine-grained local refinement. We present an out-of-core algorithm for computation of a CHPM that includes cluster decomposition, hierarchy generation, and simplification. We introduce novel cluster dependencies in the preprocess to generate crack-free, drastic simplifications at runtime. The clusters are used for LOD selection, occlusion culling, and out-of-core rendering. We add a frame of latency to the rendering pipeline to fetch newly visible clusters from the disk and avoid stalls. The CHPM reduces the refinement cost of view-dependent rendering by more than an order of magnitude as compared to a vertex hierarchy. We have implemented our algorithm on a desktop PC. We can render massive CAD, isosurface, and scanned models, consisting of tens or a few hundred million triangles at 15-35 frames per second with little loss in image quality.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:11 ,  Issue: 4 )