Cart (Loading....) | Create Account
Close category search window

Conflict-free accesses to strided vectors on a banked cache

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seznec, A. ; IRISA, Inst. Nat. de Recherche en Inf. et Autom., Rennes, France ; Espasa, R.

With the advance of integration technology, it has become feasible to implement a microprocessor, a vector unit, and a multimegabyte bank-interleaved L2 cache on a single die. Parallel access to strided vectors on the L2 cache is a major performance issue on such vector microprocessors. A major difficulty for such a parallel access is that one would like to interleave the cache on a block size basis in order to benefit from spatial locality and to maintain a low tag volume, while strided vector accesses naturally work on a word granularity. In this paper, we address this issue. Considering a parallel vector unit with 2n independent lanes, a 2n bank interleaved cache, and a cache line size of 2k words, we show that any slice of 2n+k consecutive elements of any strided vector with stride 2rR with R odd and r ≤ k can be accessed in the L2 cache and routed back to the lanes in 2k subslices of 2n elements.

Published in:

Computers, IEEE Transactions on  (Volume:54 ,  Issue: 7 )

Date of Publication:

July 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.