By Topic

XOR-based hash functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vandierendonck, H. ; Dept. of Electron. & Inf. Syst., Ghent Univ., Belgium ; De Bosschere, K.

Bank conflicts can severely reduce the bandwidth of an interleaved multibank memory and conflict misses increase the miss rate of a cache or a predictor. Both occurrences are manifestations of the same problem: objects, which should be mapped to different indices, are accidentally mapped to the same index. Suitable chosen hash functions can avoid conflicts in each of these situations by mapping the most frequently occurring patterns conflict-free. A particularly interesting class of hash functions is the XOR-based hash functions, which compute each set index bit as the exclusive-or of a subset of the address bits. When implementing a XOR-based hash function, it is extremely important to understand what patterns are mapped conflict-free and how a hash function can be constructed to map the most frequently occurring patterns without conflicts. Hereto, this paper presents two ways to reason about hash functions: by their space and by their column space. The space helps to quickly determine whether a pattern is mapped conflict-free. The column space is more useful for other purposes, e.g., to reduce the fan-in of the XOR-gates without introducing conflicts or to evaluate interbank dispersion in skewed-associative caches. Examples illustrate how these ideas can be applied to construct conflict-free hash functions.

Published in:

Computers, IEEE Transactions on  (Volume:54 ,  Issue: 7 )