By Topic

A position control for a parallel stage with 6 degrees of freedom using magnetic actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Se-Han Lee ; Div. of Mech. & Autom. Eng., Kyungnam Univ., South Korea ; Ki-Chang Lee ; Jung-Woo Jeon ; Don-Ha Hwang
more authors

In this paper, we address a position control scheme for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by using the vertical and horizontal forces. Dynamic equations of the stage system are derived based on Newton-Euler method and its special Jacobian matrix describing a relation between the Joint velocity and platen velocity is done. There are proposed two control schemes for positioning, which are Cartesian space controller and Joint space controller. The control performance of the Cartesian space controller is better than the Joint space controller in task space trajectory', while the Joint space controller is simpler than the Cartesian space controller in controller realization.

Published in:

Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE  (Volume:3 )

Date of Conference:

2-6 Nov. 2004