Cart (Loading....) | Create Account
Close category search window
 

Process optimization of lead-free wafer-level underfill material used in chip scale packaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liu, Y. ; National Starch & Chem. Co., Bridgewater, NJ, USA ; Dutt, G. ; Xiao, A.

Wafer-level underfilling is an emerging technology that consists of pre-applying the underfill material on wafer during the wafer fabrication process. The novel underfill material and the process enable the chip manufacturers to perform underfill at the wafer-level, thereby eliminating multiple steps in the packaging process and cutting production cost significantly. However, lead-free solder poses significant challenge to this new technology. Compared to eutectic solder, lead-free solder tends to have a lower yield stress, requires higher reflow temperature and forms brittle joints. With increasing demand of lead-free compatible packaging material, further advancement of wafer level underfill material and process optimization are necessary to ensure compatibility with lead-free solders, better voiding performance and higher interconnection yield. We have developed novel wafer level underfill materials for chip scale packaging that are compatible with lead-free assembly. These materials, when coated on the wafer, form clear, transparent coating after B-stage that can be diced into coated dies without any delaminating and cracking. In this paper we discuss the effect of various heating profiles and different equipment used in the B-stage step on flow of underfill during the reflow, residual solvent after B-stage, solder paste smearing, and interconnection yield. By optimizing the material properties and B-stage conditions, we demonstrated that wafer level underfill material can achieve high interconnect yield without causing smearing and voiding in lead-free assembly.

Published in:

Advanced Packaging Materials: Processes, Properties and Interfaces, 2005. Proceedings. International Symposium on

Date of Conference:

16-18 March 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.