By Topic

Performance analysis of AC-coupled burst-mode receiver for fiber-optic burst switching networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
E. Rotem ; Dept. of Electr. Eng., Ben Gurion Univ., Beer Sheva, Israel ; D. Sadot

A generalized theoretical analysis of an AC-coupled fiber-optic burst-mode receiver is presented. This receiver is designed to operate in optical burst-switching networks using DC-balanced data coding such as 8B10B. Analytic expressions for the recovery time are derived as a function of the system dynamic range, power penalty, and data coding format. The theoretical calculations are verified with a detailed simulation. It is shown that locking time of the order of nanoseconds can be achieved with commercially available AC-coupled receivers. The burst-mode receiver can adapt to large (>10 dB) amplitude variations in 30 ns with a power penalty of 2 dB at 12.5 Gb/s. An overall optimization of the transmitter-receiver link-setup time is performed for an optical burst-switching network based on tunable laser transmitters. The dark interval during laser tuning (∼50 ns) is shown to have a beneficial impact on the receiver's response time, effectively reducing its locking time to a few nanoseconds, thus resulting in an overall link setup time of about 50 ns, limited by the laser's tuning time.

Published in:

IEEE Transactions on Communications  (Volume:53 ,  Issue: 5 )