By Topic

A new computationally efficient discrete bit-loading algorithm for DMT applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Papandreou, N. ; Dept. of Electr. Eng. & Comput. Technol., Univ. of Patras, Rio-Patras, Greece ; Antonakopoulos, T.

This letter presents a new bit-loading algorithm for discrete multitone systems that converges faster to the same bit allocation as the optimal discrete bit-filling and bit-removal methods. The algorithm exploits the differences between the subchannel gain-to-noise ratios in order to determine an initial bit allocation and then performs a multiple-bits loading procedure for achieving the requested target rate. Numerical results using asymmetric digital subscriber test loops demonstrate the computational efficiency of the proposed algorithm.

Published in:

Communications, IEEE Transactions on  (Volume:53 ,  Issue: 5 )