By Topic

A portable digitally controlled oscillator using novel varactors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pao-Lung Chen ; Dept. of Electron., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Ching-Che Chung ; Chen-Yi Lee

This work presents a portable digitally controlled oscillator (DCO) by using two-input NOR gates as a digitally controlled varactor (DCV) in fine-tuning delay cell design. This novel varactor uses the gate capacitance difference of NOR gates under different digital control inputs to establish a DCV. Thus proposed DCO can improve delay resolution 256 times better than a single buffer design. This study also examines different types of NOR/NAND gates (2-input or 3-input) for DCV. The proposed DCO with novel DCV can be implemented with standard cells, and thus it can be ported to different processes in short time. Furthermore, the final circuit layout can be generated using an auto placement and routing (APR) tools. A test chip demonstrates that LSB resolution of the DCO can be improved to 1.55 ps with standard 0.35-μm 2P4M CMOS digital cell library. The proposed DCO has good performance in terms of fine resolution, high portability, and short design turnaround cycle compared with conventional DCO designs.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:52 ,  Issue: 5 )