By Topic

Fat and hydration monitoring by abdominal bioimpedance analysis: data interpretation by hierarchical electrical modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Scharfetter, H. ; Inst. of Med. Eng., Graz Univ. of Technol., Austria ; Brunner, P. ; Mayer, M. ; Brandstatter, B.
more authors

In a previous publication, it was demonstrated that the abdominal subcutaneous fat layer thickness (SFL) is strongly correlated with the abdominal electrical impedance when measured with a transversal tetrapolar electrode arrangement. This article addresses the following questions: 1) To which extent do different abdominal compartments contribute to the impedance? 2) How does the hydration state of tissues affect the data? 3) Can hydration and fat content be assessed independently? For simulating the measured data a hierarchical electrical model was built. The abdomen was subdivided into three compartments (subcutaneous fat, muscle, mesentery). The true anatomical structure of the compartment boundaries was modeled using finite-element modeling (FEM). Each compartment is described by an electrical tissue model parameterized in physiological terms. Assuming the same percent change of the fat fraction in the mesentery and the SFL the model predicts a change of 1,24 Ω/mm change of the SFL compared to 1,1 Ω/mm measured. 42% of the change stem from the SFL, 56% from the mesentery and 2% from changes of fat within the muscle compartment. A 1% increase of the extracellular water in the muscle is not discernible from a 1% decrease of the SFL. The measured data reflect not only the SFL but also the visceral fat. The tetrapolar electrode arrangement allows the measurement of the abdominal fat content only if the hydration remains constant.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:52 ,  Issue: 6 )