By Topic

A phase variable model of brushless dc motors based on finite element analysis and its coupling with external circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mohammed, O.A. ; Dept. of Electr. & Comput. Eng., Florida Int. Univ., Miami, FL, USA ; Liu, S. ; Liu, Z.

This paper presents a fast and accurate brushless dc motor (BLDC) phase variable model for drive system simulations. The developed model was built based on nonlinear transient finite-element analysis to obtain the inductances, back electromotive force as well as the cogging torque. The model was implemented in a Simulink environment through the creation of an adjustable inductance component to account for the dependence of inductances on rotor position. Since no dq model for BLDC actually exists, the significance of this work is that it provides an accurate equivalent circuit model of BLDC motors for utilization in simulation environments. Using the developed model, the sensorless control and the torque ripple control issues were investigated and the simulation results show its practical effectiveness.

Published in:

Magnetics, IEEE Transactions on  (Volume:41 ,  Issue: 5 )