By Topic

Genetically optimized fuzzy decision trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
W. Pedrycz ; Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, Alta., Canada ; Z. A. Sosnowski

In this study, we are concerned with genetically optimized fuzzy decision trees (G-DTs). Decision trees are fundamental architectures of machine learning, pattern recognition, and system modeling. Starting with the generic decision tree with discrete or interval-valued attributes, we develop its fuzzy set-based generalization. In this generalized structure we admit the values of the attributes that are represented by some membership functions. Such fuzzy decision trees are constructed in the setting of genetic optimization. The underlying genetic algorithm optimizes the parameters of the fuzzy sets associated with the individual nodes where they play a role of fuzzy "switches" by distributing a flow of processing completed within the tree. We discuss various forms of the fitness function that help capture the essence of the problem at hand (that could be either of classification nature when dealing with discrete outputs or regression-like when handling a continuous output variable). We quantify a nature of the generalization of the tree by studying an optimally adjusted spreads of the membership functions located at the nodes of the decision tree. A series of experiments exploiting synthetic and machine learning data is used to illustrate the performance of the G-DTs.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:35 ,  Issue: 3 )