Cart (Loading....) | Create Account
Close category search window
 

Object detection via feature synthesis using MDL-based genetic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lin, Yingqiang ; Center for Res. in Intelligent Syst., Univ. of California, Riverside, CA, USA ; Bhanu, B.

In this paper, we use genetic programming (GP) to synthesize composite operators and composite features from combinations of primitive operations and primitive features for object detection. The motivation for using GP is to overcome the human experts' limitations of focusing only on conventional combinations of primitive image processing operations in the feature synthesis. GP attempts many unconventional combinations that in some cases yield exceptionally good results. To improve the efficiency of GP and prevent its well-known code bloat problem without imposing severe restriction on the GP search, we design a new fitness function based on minimum description length principle to incorporate both the pixel labeling error and the size of a composite operator into the fitness evaluation process. To further improve the efficiency of GP, smart crossover, smart mutation and a public library ideas are incorporated to identify and keep the effective components of composite operators. Our experiments, which are performed on selected training regions of a training image to reduce the training time, show that compared to normal GP, our GP algorithm finds effective composite operators more quickly and the learned composite operators can be applied to the whole training image and other similar testing images. Also, compared to a traditional region-of-interest extraction algorithm, the composite operators learned by GP are more effective and efficient for object detection.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:35 ,  Issue: 3 )

Date of Publication:

June 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.