By Topic

Learning semantic scene models from observing activity in visual surveillance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Makris ; Kingston Univ., UK ; T. Ellis

This paper considers the problem of automatically learning an activity-based semantic scene model from a stream of video data. A scene model is proposed that labels regions according to an identifiable activity in each region, such as entry/exit zones, junctions, paths, and stop zones. We present several unsupervised methods that learn these scene elements and present results that show the efficiency of our approach. Finally, we describe how the models can be used to support the interpretation of moving objects in a visual surveillance environment.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:35 ,  Issue: 3 )