By Topic

PSTM/NSOM modeling by 2-D quadridirectional eigenmode expansion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Hammer ; MESA Res. Inst., Univ. of Twente, Enschede, Netherlands ; R. Stoffer

A two-dimensional (2-D) model for photon-scanning tunneling microscopy (PSTM) of integrated optical devices is evaluated. The simulations refer to a setup where the optical field in the vicinity of the sample is probed by detecting the optical power that is transferred via evanescent or radiative coupling to the tapered tip of an optical fiber close to the sample surface. Scanning the tip across the surface leads to a map of the local optical field in the sample. As a step beyond the mere analysis of the sample device, simulations are considered that include the sample as well as the probe tip. An efficient semianalytical simulation technique based on quadridirectional eigenmode expansions is applied. Results for a series of configurations, where slab waveguides with different types of corrugations serve as samples, allow assessment of the relation between the PSTM signal and the local field distribution in the sample. A reasonable qualitative agreement was observed between these computations and a previous experimental PSTM investigation of a waveguide Bragg grating.

Published in:

Journal of Lightwave Technology  (Volume:23 ,  Issue: 5 )