Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zavorin, I. ; Goddard Earth Sci. & Technol. Center, Univ. of Maryland Baltimore County, Catonsville, MD, USA ; Le Moigne, J.

The problem of image registration, or the alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast, and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times and that would provide subpixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the bandpass wavelets obtained from the steerable pyramid due to Simoncelli performs best in terms of accuracy and consistency, while the low-pass wavelets obtained from the same pyramid give the best results in terms of the radius of convergence. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 6 )