By Topic

Design and analysis of an integrated optical sensor for scanning force microscopies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kocabas, Coskun ; Dept. of Phys., Bilkent Univ., Ankara, Turkey ; Aydinli, Atilla

In this paper, a novel probe for displacement sensing will be introduced. It is based on a conventional GaAs cantilever, integrated with a Bragg grating as a photo-elastic strain sensor. The deflection of the cantilever is measured directly from the intensity modulation of the reflected light. The principle of the experimental setup and the sensor, as well as the theoretical investigation of the force and displacement sensitivity of the probe, is presented. Finite-element method simulations were performed to get the optimum sensor design. Transfer matrix method simulation of the waveguide grating have been described in detail. In order to enhance the sensitivity, different types of grating structures are discussed. Using this new design, it should be possible to achieve sensitivities, defined as the fractional change in detected optical power per unit displacement of the cantilever, as high as 10-4 Å-1 of cantilever deflection.

Published in:

Sensors Journal, IEEE  (Volume:5 ,  Issue: 3 )