By Topic

Studying Thermal Management for Graphics-Processor Architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. W. Sheaffer ; Dept. of Comput. Sci., Virginia Univ., Charlottesville, VA ; K. Skadron ; D. P. Luebke

We have previously presented Qsilver, a flexible simulation system for graphics architectures. In this paper we describe our extensions to this system, which we use - instrumented with a power model and HotSpot - to analyze the application of standard CPU static and runtime thermal management techniques on the GPU. We describe experiments implementing clock gating, fetch gating, dynamic voltage scaling, multiple clock domains and permuted floor-planning on the GPU using our simulation environment, and demonstrate that these techniques are beneficial in the GPU domain. Further, we show that the inherent parallelism of GPU workloads enables significant thermal gains on chips designed employing static floorplan repartitioning

Published in:

IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.

Date of Conference:

20-22 March 2005