Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

A fully parallel and scalable implementation of a Hopfield neural network on the SHARC-net supercomputer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sykes, E.R. ; Sch. of Appl. Comput. & Eng. Sci., Sheridan Inst. of Technol. & Adv. Learning, Oakville, Ont., Canada ; Mirkovic, A.

Artificial neural networks (ANN) are an established area of artificial intelligence (AI) and computer science. ANNs have been used in a number of ways for research and industrial projects. However, despite ANN research spanning many years, the typical implementation is a single threaded programming model. This paper presents a fully parallel implementation of a Hopfield neural network using a supercomputer. The goal of this project is to develop a core learning unit capable of enormous range of scaling ability over a large number of nodes in a supercomputer. Furthermore, we integrate techniques that minimize the dependencies on any particular topology thus making it easier to port to other supercomputing environments. Ideally, other SHARC-net users extend these ideas and conduct research using the tools developed in this project. This paper provides an outline of the issues associated with the development of this artificial neural network on SHARC-net, the benefits of such work, the difficulties encountered and future directions.

Published in:

High Performance Computing Systems and Applications, 2005. HPCS 2005. 19th International Symposium on

Date of Conference:

15-18 May 2005