By Topic

High performance derivative-free optimization applied to biomedical image registration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wachowiak, M.P. ; Imaging Res. Lab., Robarts Res. Inst., London, Ont., Canada

Optimization of a similarity metric is an essential component in most medical image registration approaches based on image intensities. In this paper, two new, deterministic, derivative-free optimization algorithms are parallelized and adapted for image registration. DIRECT (dividing rectangles) is a global technique for linearly bounded problems, and the multidirectional search (MOS) is a local method. Unlike many other deterministic optimization techniques, DIRECT and MDS allow coarse-grained parallelism. The performance of DIRECT, MDS, and hybrid methods using a fine-grained parallelization of Powell's method for local refinement, are compared. Experimental results show that DIRECT and MDS are robust, and can greatly reduce computation time in parallel implementations.

Published in:

High Performance Computing Systems and Applications, 2005. HPCS 2005. 19th International Symposium on

Date of Conference:

15-18 May 2005