By Topic

A nonlinear least-squares approach for identification of the induction motor parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kaiyu Wang ; Dept. of Electr. & Comput. Eng., Tennessee Univ., Knoxville, TN, USA ; Chiasson, J. ; Bodson, M. ; Tolbert, L.M.

A nonlinear least-squares method is presented for the identification of the induction motor parameters. A major difficulty with the induction motor is that the rotor state variables are not available measurements so that the system identification model cannot be made linear in the parameters without overparametrizing the model. Previous work in the literature has avoided this issue by making simplifying assumptions such as a "slowly varying speed". Here, no such simplifying assumptions are made. The problem is formulated as a nonlinear system identification problem and uses elimination theory (resultants) to compute the parameter vector that minimizes the residual error. The only assumption is that the system be sufficiently excited. The method is suitable for online operation to continuously update the parameter values. Experimental results are presented.

Published in:

Decision and Control, 2004. CDC. 43rd IEEE Conference on  (Volume:4 )

Date of Conference:

14-17 Dec. 2004