Cart (Loading....) | Create Account
Close category search window
 

Multispectral classification of Landsat-images using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bischof, H. ; Dept. for Pattern Recognition & Image Process., Tech. Univ. of Vienna, Austria ; Schneider, W. ; Pinz, A.J.

The authors report the application of three-layer back-propagation networks for classification of Landsat TM data on a pixel-by-pixel basis. The results are compared to Gaussian maximum likelihood classification. First, it is shown that the neural network is able to perform better than the maximum likelihood classifier. Secondly, in an extension of the basic network architecture it is shown that textural information can be integrated into the neural network classifier without the explicit definition of a texture measure. Finally, the use of neural networks for postclassification smoothing is examined

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:30 ,  Issue: 3 )

Date of Publication:

May 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.