By Topic

Compact object recognition using energy-function-based optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Friedland, N.S. ; Center for Autom. Res., Maryland Univ., College Park, MD, USA ; Rosenfeld, Azriel

Describes a method of recognizing objects whose contours can be represented in smoothly varying polar coordinate form. Both low- and high-level information about the object (contour smoothness and edge sharpness at the low level and contour shape at the high level) are incorporated into a single energy function that defines a 1D, cyclic, Markov random field (1DCMRF). This 1DCMRF is based on a polar coordinate object representation whose center can be initialized at any location within the object. The recognition process is based on energy function minimization, which is implemented by simulated annealing

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:14 ,  Issue: 7 )