By Topic

Object and texture classification using higher order statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsatsanis, M.K. ; Dept. of Electr. Eng., Virginia Univ., Charlottesville, VA, USA ; Giannakis, G.B.

The problem of the detection and classification of deterministic objects and random textures in a noisy scene is discussed. An energy detector is developed in the cumulant domain by exploiting the noise insensitivity of higher order statistics. An efficient implementation of this detector is described, using matched filtering. Its performance is analyzed using asymptotic distributions in a binary hypothesis-testing framework. The object and texture discriminant functions are minimum distance classifiers in the cumulant domain and can be efficiently implemented using a bank of matched filters. They are immune to additive Gaussian noise and insensitive to object shifts. Important extensions, which can handle object rotation and scaling, are also discussed. An alternative texture classifier is derived from a ML viewpoint and is statistically efficient at the expense of complexity. The application of these algorithms to the texture-modeling problem is indicated, and consistent parameter estimates are obtained

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:14 ,  Issue: 7 )