By Topic

Characterization of signals from multiscale edges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mallat, S. ; Courant Inst., New York Univ., NY, USA ; Zhong, S.

A multiscale Canny edge detection is equivalent to finding the local maxima of a wavelet transform. The authors study the properties of multiscale edges through the wavelet theory. For pattern recognition, one often needs to discriminate different types of edges. They show that the evolution of wavelet local maxima across scales characterize the local shape of irregular structures. Numerical descriptors of edge types are derived. The completeness of a multiscale edge representation is also studied. The authors describe an algorithm that reconstructs a close approximation of 1-D and 2-D signals from their multiscale edges. For images, the reconstruction errors are below visual sensitivity. As an application, a compact image coding algorithm that selects important edges and compresses the image data by factors over 30 has been implemented

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:14 ,  Issue: 7 )