By Topic

Computerized flow field analysis: oriented texture fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rao, A.R. ; Artificial Intelligence Lab., Michigan Univ., Ann Arbor, MI, USA ; Jain, R.C.

An approach to the solution of signal-to-symbol transformation in the domain of flow fields, such as oriented texture fields and velocity vector fields, is discussed. The authors use the geometric theory of differential equations to derive a symbol set based on the visual appearance of phase portraits which are a geometric representation of the solution curves of a system of differential equations. They also provide the computational framework to start with a given flow field and derive its symbolic representation. Specifically, they segment the given texture, derive its symbolic representation, and perform a quantitative reconstruction of the salient features of the original texture based on the symbolic descriptors. Results of applying this technique to several real texture images are presented. This technique is useful in describing complex flow visualization pictures, defects in lumber processing, defects in semiconductor wafer inspection, and optical flow fields

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:14 ,  Issue: 7 )