By Topic

Linear stochastic programming with minimax quantile and probability criterions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. R. Pankov ; Probability Theor. Dept., Moscow Aviation Inst., Russia ; E. N. Platonov ; A. S. Popov ; K. V. Siemenikhin

The problems of linear stochastic model optimization are considered using quantile and probability criterions. The a priori information about the distribution law of the model random coefficients is defined by certain constraints on the first- and second-order moments. The concept of the minimax strategy is formulated and the last one is constructed using the convex programming duality theory. The analytic dependence of the minimax strategy on the solution of the dual problem is derived. A computational procedure for solving the dual problem is examined. The results of computer modeling are presented.

Published in:

Decision and Control, 2004. CDC. 43rd IEEE Conference on  (Volume:3 )

Date of Conference:

14-17 Dec. 2004