By Topic

On parameter-dependent Lyapunov functions for robust stability of linear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

For a linear system affected by real parametric uncertainty, this paper focuses on robust stability analysis via quadratic-in-the-state Lyapunov functions polynomially dependent on the parameters. The contribution is twofold. First, if n denotes the system order and m the number of parameters, it is shown that it is enough to seek a parameter-dependent Lyapunov function of given degree 2nm in the parameters. Second, it is shown that robust stability can be assessed by globally minimizing a multivariate scalar polynomial related with this Lyapunov matrix. A hierarchy of LMI relaxations is proposed to solve this problem numerically, yielding simultaneously upper and lower bounds on the global minimum with guarantee of asymptotic convergence.

Published in:

Decision and Control, 2004. CDC. 43rd IEEE Conference on  (Volume:1 )

Date of Conference:

17-17 Dec. 2004