By Topic

A classifier-based text mining approach for evaluating semantic relatedness using support vector machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chung-Hong Lee ; Dept. of Electr. Eng., Nat. Kaohsiung Univ. of Appl. Sci., Taiwan ; Hsin-Chang Yang

The quantification of evaluating semantic relatedness among texts has been a challenging issue that pervades much of machine learning and natural language processing. This paper presents a hybrid approach of a text-mining technique for measuring semantic relatedness among texts. In this work we develop several text classifiers using support vector machines (SVM) method to supporting acquisition of relatedness among texts. First, we utilized our developed text mining algorithms, including text mining techniques based on classification of texts in several text collections. After that, we employ various SVM classifiers to deal with evaluation of relatedness of the target documents. The results indicate that this approach can also be fitted to other research work, such as information filtering, and recategorizing resulting documents of search engine queries.

Published in:

Information Technology: Coding and Computing, 2005. ITCC 2005. International Conference on  (Volume:1 )

Date of Conference:

4-6 April 2005