Cart (Loading....) | Create Account
Close category search window
 

Development of a long-pulse 1.3 GHz relativistic klystron amplifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

A research approach for obtaining kilojoule microwave pulses of microsecond duration at 1.3 GHz from the relativistic klystron amplifier is described. Achieving kilojoule microwave pulses requires extending electron beam pulse durations and maximizing the microwave extraction efficiency at the fundamental frequency. An electron beam diode has been constructed that delivers peak currents in excess of 5 kA with a monotonically increasing current pulse exceeding durations of 1 μs at beam kinetic energies above 400 keV. Close attention has been given to minimizing the current losses from the diode. Maximum microwave extraction efficiency at the fundamental frequency has been related to the beam bunching amplitude and output cavity shunt impedance in terms of a simple circuit theory. The circuit theory predictions have been tested by particle-in-cell code calculations of the electron beam interactions with the proposed cavity structures. The successful cavity structures have been constructed and are awaiting testing

Published in:

Plasma Science, IEEE Transactions on  (Volume:20 ,  Issue: 3 )

Date of Publication:

Jun 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.