By Topic

Theory of relativistic backward-wave oscillators with end reflectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Levush, B. ; Maryland Univ., College Park, MD, USA ; Antonsen, T.M. ; Bromborsky, A. ; Lou, W.-R.
more authors

Microwave sources based on backward-wave oscillators (BWOs) with relativistic electron beams are capable of producing high-power coherent radiation in the centimeter- and millimeter-wavelength regimes. Although there have been a number of experiments reported over the last decade on this topic, there are only a few publications providing a theoretical description of these devices. Thus, there is a need for theoretical models which can be compared in detail with the experimental data. This work is devoted to filling this need. The linear and nonlinear theory if BWOs is developed taking into account reflection of the electromagnetic wave at the boundaries of the slow-wave structure. It is found that owing to end reflections the start oscillation current and the efficiency are sensitive functions of the operating parameters. Regions of stable single-frequency operation in these devices are determined numerically. The effects of finite duration and rise time of the electron beam pulse on device operation are discussed

Published in:

Plasma Science, IEEE Transactions on  (Volume:20 ,  Issue: 3 )