By Topic

Experimental class-F power amplifier design using computationally efficient and accurate large-signal pHEMT model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wren, M. ; Dept. of Electron. & Electr. Eng., Univ. Coll. Dublin, Ireland ; Brazil, T.J.

This paper presents an experimental high-efficiency class-F power amplifier (PA) design, which integrates Rhodes's efficient low-pass matching network topology with the charge conservative, robust, and accurate WREN/COBRA nonlinear pseudomorphic high electron-mobility transistor (pHEMT) model for optimal drain efficiency. Large-signal model verification is undertaken where one-tone, load-pull, and wireless code-division multiple-access baseband time-domain tests are compared for simulated and experimental cases. Following a detailed theoretical analysis, a class-F matching network is proposed that suppresses the necessary load harmonics and delivers maximum drain efficiency. Utilizing the GaAs pHEMT model in computer-aided design, a microstrip matching network layout was generated and built at 2 GHz. The drain efficiency recorded for the first-pass effort was 70.5% with the use of no post-fabrication circuit tuning. Excellent agreement is also observed between the PAs simulated and measured performance, thus highlighting the advantages of an accurate device model in PA design.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:53 ,  Issue: 5 )