By Topic

The slot-coupled hemispherical dielectric resonator antenna with a parasitic patch: applications to the circularly polarized antenna and wide-band antenna

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kwok Wa Leung ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China ; Hoi Kuen Ng

The aperture-coupled hemispherical dielectric resonator antenna (DRA) with a parasitic patch is studied rigorously. Using the Green's function approach, integral equations for the unknown patch and slot currents are formulated and solved using the method of moments. The theory is utilized to design a circularly polarized (CP) DRA and a wide-band linearly polarized (LP) DRA. In the former, the CP frequency and axial ratio (AR) can easily be controlled by the patch location and patch size, respectively, with the impedance matched by varying the slot length and microstrip stub length. It is important that the AR will not be affected when the input impedance is tuned, and the CP design is therefore greatly facilitated. For the wide-band LP antenna, a maximum bandwidth of 22% can be obtained, which is much wider than the previous bandwidth of 7.5% with no parasitic patches. Finally, the frequency-tuning characteristics of the proposed antenna are discussed. Since the parasitic patch can be applied to any DRAs, the method will find applications in practical DRA designs.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:53 ,  Issue: 5 )