By Topic

Model-order reduction by dominant subspace projection: error bound, subspace computation, and circuit applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guoyong Shi ; Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA ; Shi, C.-J.R.

Balanced truncation is a well-known technique for model-order reduction with a known uniform reduction error bound. However, its practical application to large-scale problems is hampered by its cubic computational complexity. While model-order reduction by projection to approximate dominant subspaces without balancing has produced encouraging experimental results, the approximation error bound has not been fully analyzed. In this paper, a square-integral reduction error bound is derived for unbalanced dominant subspace projection by using a frequency-domain solution of the Lyapunov equation. Such an error bound is valid in both the frequency and time domains. Then, a dominant subspace computation scheme together with three Krylov subspace options is introduced. It is analytically justified that the Krylov subspace for moment matching at low frequencies is able to provide a better dominant subspace approximation than the Krylov subspace at high frequencies, while a rational Krylov subspace with a proper real shift parameter is capable of achieving superior approximation than the Krylov subspace at low frequency. A heuristic method of choosing a real shift parameter is also introduced based on its new connection to the discretization of a continuous-time model. The computation algorithm and theoretical analysis are then examined by several numerical examples to demonstrate the effectiveness. Finally, the dominant subspace computation scheme is applied to the model-order reduction of two large-scale interconnect circuit examples.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 5 )