By Topic

SCR device fabricated with dummy-gate structure to improve turn-on speed for effective ESD protection in CMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ming-Dou Ker ; Nanoelectron. & Gigascale Syst. Lab., Nat. Chiao-Tung Univ., Hsinchu, Taiwan ; Kuo-Chun Hsu

Turn-on speed is the main concern for an on-chip electrostatic discharge (ESD) protection device, especially in the nanoscale CMOS processes with ultrathin gate oxide. A novel dummy-gate-blocking silicon-controlled rectifier (SCR) device employing a substrate-triggered technique is proposed to improve the turn-on speed of an SCR device for using in an on-chip ESD protection circuit to effectively protect the much thinner gate oxide. The fabrication of the proposed SCR device with dummy-gate structure is fully process-compatible with general CMOS process, without using an extra mask layer or adding process steps. From the experimental results in a 0.25-μm CMOS process with a gate-oxide thickness of ∼50 Å, the switching voltage, turn-on speed, turn-on resistance, and charged-device-model ESD levels of the SCR device with dummy-gate structure have been greatly improved, as compared to the normal SCR with shallow trench isolation structure.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:18 ,  Issue: 2 )