By Topic

Zeroing polynomials using modified constrained neural network approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper proposes new modified constrained learning neural root finders (NRFs) of polynomial constructed by backpropagation network (BPN). The technique is based on the relationships between the roots and the coefficients of polynomial as well as between the root moments and the coefficients of the polynomial. We investigated different resulting constrained learning algorithms (CLAs) based on the variants of the error cost functions (ECFs) in the constrained BPN and derived a new modified CLA (MCLA), and found that the computational complexities of the CLA and the MCLA based on the root-moment method (RMM) are the order of polynomial, and that the MCLA is simpler than the CLA. Further, we also discussed the effects of the different parameters with the CLA and the MCLA on the NRFs. In particular, considering the coefficients of the polynomials involved in practice to possibly be perturbed by noisy sources, thus, we also evaluated and discussed the effects of noises on the two NRFs. Finally, to demonstrate the advantage of our neural approaches over the nonneural ones, a series of simulating experiments are conducted.

Published in:

Neural Networks, IEEE Transactions on  (Volume:16 ,  Issue: 3 )