By Topic

Decision feedback recurrent neural equalization with fast convergence rate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jongsoo Choi ; Sch. of Inf. Technol. & Eng., Univ. of Ottawa, Ont., Canada ; Bouchard, M. ; Tet Hin Yeap

Real-time recurrent learning (RTRL), commonly employed for training a fully connected recurrent neural network (RNN), has a drawback of slow convergence rate. In the light of this deficiency, a decision feedback recurrent neural equalizer (DFRNE) using the RTRL requires long training sequences to achieve good performance. In this paper, extended Kalman filter (EKF) algorithms based on the RTRL for the DFRNE are presented in state-space formulation of the system, in particular for complex-valued signal processing. The main features of global EKF and decoupled EKF algorithms are fast convergence and good tracking performance. Through nonlinear channel equalization, performance of the DFRNE with the EKF algorithms is evaluated and compared with that of the DFRNE with the RTRL.

Published in:

Neural Networks, IEEE Transactions on  (Volume:16 ,  Issue: 3 )