By Topic

Mutation-based genetic neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
P. P. Palmes ; Lab. for Neuroinformatics, RIKEN Brain Sci. Inst., Saitama, Japan ; T. Hayasaka ; S. Usui

Evolving gradient-learning artificial neural networks (ANNs) using an evolutionary algorithm (EA) is a popular approach to address the local optima and design problems of ANN. The typical approach is to combine the strength of backpropagation (BP) in weight learning and EA's capability of searching the architecture space. However, the BP's "gradient descent" approach requires a highly computer-intensive operation that relatively restricts the search coverage of EA by compelling it to use a small population size. To address this problem, we utilized mutation-based genetic neural network (MGNN) to replace BP by using the mutation strategy of local adaptation of evolutionary programming (EP) to effect weight learning. The MGNN's mutation enables the network to dynamically evolve its structure and adapt its weights at the same time. Moreover, MGNN's EP-based encoding scheme allows for a flexible and less restricted formulation of the fitness function and makes fitness computation fast and efficient. This makes it feasible to use larger population sizes and allows MGNN to have a relatively wide search coverage of the architecture space. MGNN implements a stopping criterion where overfitness occurrences are monitored through "sliding-windows" to avoid premature learning and overlearning. Statistical analysis of its performance to some well-known classification problems demonstrate its good generalization capability. It also reveals that locally adapting or scheduling the strategy parameters embedded in each individual network may provide a proper balance between the local and global searching capabilities of MGNN.

Published in:

IEEE Transactions on Neural Networks  (Volume:16 ,  Issue: 3 )