By Topic

Enhanced FMAM based on empirical kernel map

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Min Wang ; Dept. of Comput. Sci., Nanjing Univ. of Aeronaut. & Astronaut., China ; Songcan Chen

The existing morphological auto-associative memory models based on the morphological operations, typically including morphological auto-associative memories (auto-MAM) proposed by Ritter et al. and our fuzzy morphological auto-associative memories (auto-FMAM), have many attractive advantages such as unlimited storage capacity, one-shot recall speed and good noise-tolerance to single erosive or dilative noise. However, they suffer from the extreme vulnerability to noise of mixing erosion and dilation, resulting in great degradation on recall performance. To overcome this shortcoming, we focus on FMAM and propose an enhanced FMAM (EFMAM) based on the empirical kernel map. Although it is simple, EFMAM can significantly improve the auto-FMAM with respect to the recognition accuracy under hybrid-noise and computational effort. Experiments conducted on the thumbnail-sized faces (28×23 and 14×11) scaled from the ORL database show the average accuracies of 92%, 90%, and 88% with 40 classes under 10%, 20%, and 30% randomly generated hybrid-noises, respectively, which are far higher than the auto-FMAM (67%, 46%, 31%) under the same noise levels.

Published in:

Neural Networks, IEEE Transactions on  (Volume:16 ,  Issue: 3 )