By Topic

Iterative power control for imperfect successive interference cancellation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Agrawal, A. ; QUALCOMM Inc., San Diego, CA, USA ; Andrews, J.G. ; Cioffi, J.M. ; Meng, T.

Successive interference cancellation (SIC) is a technique for increasing the capacity of cellular code-division multiple-access (CDMA) systems. To be successful, SIC systems require a specific distribution of the users' received powers, especially in the inevitable event of imperfect interference cancellation. This apparent complication of standard CDMA power control has been frequently cited as a major drawback of SIC. In this paper, it is shown that surprisingly, these "complications" come with no additional complexity. It is shown that 1-bit UP/DOWN power control-like that used in commercial systems-monotonically converges to the optimal power distribution for SIC with cancellation error. The convergence is proven to within a discrete step-size in both signal-to-noise plus interference ratio and power. Additionally, the algorithm is applicable to multipath and fading channels and can overcome channel estimation error with a standard outer power control loop.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:4 ,  Issue: 3 )