By Topic

Estimation and enhancement of real-time software reliability through mutation analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Geist, R. ; Dept. of Comput. Sci., Clemson Univ., SC, USA ; Offutt, A.J. ; Harris, F.C., Jr.

A simulation-based method for obtaining numerical estimates of the reliability of N-version, real-time software is proposed. An extended stochastic Petri net is used to represent the synchronization structure of N versions of the software, where dependencies among versions are modeled through correlated sampling of module execution times. The distributions of execution times are derived from automatically generated test cases that are based on mutation testing. Since these test cases are designed to reveal software faults, the associated execution times and reliability estimates are likely to be conservative. Experimental results using specifications for NASA's planetary lander control software suggest that mutation-based testing could hold greater potential for enhancing reliability than the desirable but perhaps unachievable goal of independence among N versions. Nevertheless, some support for N-version enhancement of high-quality, mutation-tested code is also offered. Mutation analysis could also be valuable in the design of fault-tolerant software systems

Published in:

Computers, IEEE Transactions on  (Volume:41 ,  Issue: 5 )