Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Application of repulsive force and genetic algorithm to multi-manipulator collision avoidance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jih-Gau Juang ; Dept. of Guidance & Commun. Technol., Nat. Taiwan Ocean Univ., Keelung, Taiwan

Manipulator collision avoidance using genetic algorithms is presented. Control gains in the collision avoidance control model are selected based on genetic algorithms. A repulsive force is artificially created using the distances between the robot links and obstacles, which are generated by a distance computation algorithm. Real-time manipulator collision avoidance control has achieved. A repulsive force gain is introduced through the approaches for definition of link coordinate frames and kinematics computations. The safety distance between objects is affected by the repulsive force gain. This makes the safety zone adjustable and provides greater intelligence for robotic tasks under the ever-changing environment.

Published in:

Control Conference, 2004. 5th Asian  (Volume:2 )

Date of Conference:

20-23 July 2004