By Topic

Assessing the effect of uncertainty in intracavitary electrode position on endocardial potential estimates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Derfus, D.L. ; National Sci. Foundation, Duke Univ., Durham, NC, USA ; Pilkington, T.C.

The aim of the simulation study is to determine the effect of uncertainty in intracavitary probe electrode position on the accuracy of estimated endocardial potentials. Intracavitary probe position uncertainty is simulated by randomly moving an idealized probe surface about the center of an idealized left ventricular endocardial surface. These random deviations represent possible probe locations that are incorporated as correlated noise. An optimum inverse transfer coefficient matrix, relating intracavitary potentials to endocardial potentials, is computed and subsequently used to calculate the best linear estimate of the true endocardial potentials. These simulation results imply that position uncertainty of a multielectrode, intracavitary probe can be a major source of error in estimating endocardial potentials from intracavitary potentials.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:39 ,  Issue: 7 )