Cart (Loading....) | Create Account
Close category search window
 

Accurate characterization of planar printed antennas using finite-difference time-domain method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chen Wu ; Commun. Res. Lab., McMaster Univ., Hamilton, Ont., Canada ; Ke-Li Wu ; Bi, Z.Q. ; Litva, J.

The finite-difference-time-domain method (FD-TD) is used to characterize complex planar printed antennas with various feed structures, which include coaxial probe feed, microstrip line feed, and aperture coupled feed structures. A coaxial probe model is developed by using a three-dimensional FD-TD technique. This model is shown to be an efficient and accurate tool for modeling coaxial line fed structures. A novel use of a dispersive absorbing boundary condition is presented for a printed antenna with a high dielectric constant. All the numerical results obtained by the FD-TD method are compared with experimental results, and the comparison shows excellent agreement over a wide frequency band

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:40 ,  Issue: 5 )

Date of Publication:

May 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.