Cart (Loading....) | Create Account
Close category search window
 

Fabrication and initial characterisation results of a micromachined biomimetic strain sensor inspired from the Campaniform sensillum of insects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wicaksono, D.H.B. ; Dept. of Microelectron., Delft Univ. of Technol., Netherlands ; Pandraud, G. ; Craciun, G. ; Vincent, J.F.V.
more authors

In this report, we present our initial fabrication and characterisation results of a new micromachined biomimetic strain sensor. The new strain sensor is structurally inspired from the natural strain sensor found in insects, commonly called Campaniform sensillum. The high-sensitivity strain sensing capability of Campaniform sensillum is among other things due to its hole-structure, as well as its membrane-in-recess structural features. From previous works in continuum macromechanics, it is widely known that hole-structure amplifies stress and mostly becomes a crack starting point. We fabricated for the first time micromachined Si-based strain-sensing structures inspired from these structural features of Campaniform sensillum. In our initial optical characterisation results of these biomimetic Si-based microstructures, it is confirmed that the hole structural feature amplifies and concentrates strain. Thus, further application for a strain-sensing device is feasible.

Published in:

Sensors, 2004. Proceedings of IEEE

Date of Conference:

24-27 Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.