By Topic

A high-speed CMOS circuit for 1.2-Gb/s 16*16 ATM switching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

The authors describe a 0.7- mu m CMOS asynchronous transfer mode (ATM) switch circuit of 350 K transistors, the kernel of a fully autonomous 16*16 ATM switching matrix devoted to telecommunications. This matrix is able to switch ATM multiplexes with a throughput of up to 1.2 Gb/s per access line, and was implemented using 16 receiver/transmitter circuits and a control circuit. The architecture of the ATM switch circuit is based on a large embedded and shared dual-access memory. Each chip processes 4-b slices of each incoming multiplex. Seven such chips working in parallel are enough to achieve standard ATM cell switching. Up-to-date test features, such as boundary scan, built-in self-test, and redundancy were implemented in the circuit.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:27 ,  Issue: 7 )