By Topic

Direct reconstruction of kinetic parameter images from dynamic PET data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kamasak, M.E. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Bouman, C.A. ; Morris, E.D. ; Sauer, K.

Our goal in this paper is the estimation of kinetic model parameters for each voxel corresponding to a dense three-dimensional (3-D) positron emission tomography (PET) image. Typically, the activity images are first reconstructed from PET sinogram frames at each measurement time, and then the kinetic parameters are estimated by fitting a model to the reconstructed time-activity response of each voxel. However, this "indirect" approach to kinetic parameter estimation tends to reduce signal-to-noise ratio (SNR) because of the requirement that the sinogram data be divided into individual time frames. In 1985, Carson and Lange proposed, but did not implement, a method based on the expectation-maximization (EM) algorithm for direct parametric reconstruction. The approach is "direct" because it estimates the optimal kinetic parameters directly from the sinogram data, without an intermediate reconstruction step. However, direct voxel-wise parametric reconstruction remained a challenge due to the unsolved complexities of inversion and spatial regularization. In this paper, we demonstrate and evaluate a new and efficient method for direct voxel-wise reconstruction of kinetic parameter images using all frames of the PET data. The direct parametric image reconstruction is formulated in a Bayesian framework, and uses the parametric iterative coordinate descent (PICD) algorithm to solve the resulting optimization problem. The PICD algorithm is computationally efficient and is implemented with spatial regularization in the domain of the physiologically relevant parameters. Our experimental simulations of a rat head imaged in a working small animal scanner indicate that direct parametric reconstruction can substantially reduce root-mean-squared error (RMSE) in the estimation of kinetic parameters, as compared to indirect methods, without appreciably increasing computation.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:24 ,  Issue: 5 )