By Topic

A hybrid particle swarm optimization applied to loss power minimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. A. A. Esmin ; Fed. Univ. at Itajuba, Brazil ; G. Lambert-Torres ; A. C. Zambroni de Souza

This paper presents a particle swarm optimization (PSO) as a tool for loss reduction study. This issue can be formulated as a nonlinear optimization problem. The proposed application consists of using a developed optimal power flow based on loss minimization function by expanding the original PSO. The study is carried out in two steps. First, by using the tangent vector technique, the critical area of the power system is identified under the point of view of voltage instability. Second, once this area is identified, the PSO technique calculates the amount of shunt reactive power compensation that takes place in each bus. The proposed approach has been examined and tested with promising numerical results using the IEEE 118-bus system.

Published in:

IEEE Transactions on Power Systems  (Volume:20 ,  Issue: 2 )