By Topic

Power-rate-distortion analysis for wireless video communication under energy constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhihai He ; Dept. of Electr. & Comput. Eng., Univ. of Missouri, Columbia, MO, USA ; Yongfang Liang ; Lulin Chen ; I. Ahmad
more authors

Mobile devices performing video coding and streaming over wireless and pervasive communication networks are limited in energy supply. To prolong the operational lifetime of these devices, an embedded video encoding system should be able to adjust its computational complexity and energy consumption as demanded by the situation and its environment. To analyze, control, and optimize the rate-distortion (R-D) behavior of the wireless video communication system under the energy constraint, we develop a power-rate-distortion (P-R-D) analysis framework, which extends the traditional R-D analysis by including another dimension, the power consumption. Specifically, in this paper, we analyze the encoding mechanism of typical video coding systems, and develop a parametric video encoding architecture which is fully scalable in computational complexity. Using dynamic voltage scaling (DVS), an energy consumption management technology recently developed in CMOS circuits design, the complexity scalability can be translated into the energy consumption scalability of the video encoder. We investigate the R-D behavior of the complexity control parameters and establish an analytic P-R-D model. Both theoretically and experimentally, we show that, using this P-R-D model, the video coding system is able to automatically adjust its complexity control parameters to match the available energy supply of the mobile device while maximizing the picture quality. The P-R-D model provides a theoretical guideline for system design and performance optimization in mobile video communication under energy constraints.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:15 ,  Issue: 5 )