Cart (Loading....) | Create Account
Close category search window

Schedule-aware performance estimation of communication architecture for efficient design space exploration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sungchan Kim ; Dept. of Electr. Eng. & Comput. Sci., Seoul Nat. Univ., South Korea ; Chaeseok Im ; Soonhoi Ha

In this paper, we are concerned about performance estimation of bus-based communication architectures assuming that task partitioning and scheduling on processing elements are already determined. Since communication overhead is dynamic and unpredictable due to bus contention, a simulation-based approach seems inevitable for accurate performance estimation. However, it is too time-consuming to be used for exploring the wide design space of bus architectures. We propose a static performance-estimation technique based on a queueing analysis assuming that the memory traces and the task schedule information are given. We use this static estimation technique as the first step in our design space exploration framework to prune the design space drastically before applying a simulation-based approach to the reduced design space. Experimental results show that the proposed technique is several orders of magnitude faster than a trace-driven simulation while keeping the estimation error within 10% consistently in various communication architecture configurations.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 5 )

Date of Publication:

May 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.